Predict whether a given image is of a cat or a dog with 99.7% accuracy.
Kaggle: https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition
Partially based on Fast.ai course.
- [ ] TODO: The goals
- [ ] TODO: Though process and methods in creating the project
- [ ] TODO: Some bullet points with interesting observations
- [ ] TODO: Any interesting charts or diagrams
Final prediction is made from an ensemble of Xception, ResNet50, Inception-ResNetV2.
Training is done using bottlenecks on a data augmented [x6] training set (138000 299x299x3 pictures).
Precomputed bottleneck features are feeded into 2 hidden dense layers [x2048] and 1 output softmax layer.
Training set size = 2.5GB. Model size = 1GB per model (saved precomputed weights).
Time to precompute bottlenecks: 2hr per model on a GTX 770.
Time to train: 5sec/epoch with 10000 batch size.
Ensemble reaches 99.7% accuracy on the validation set (only 6/2000 incorrect).
0.03893 leaderboard score (15th place from 1,314 teams).
- keras==2.0.9
- tensorflow==1.2.0
- pandas
- seaborn
- sklearn
pip install kaggle-cli
kg config -g -u <username> -p <password> -c dogs-vs-cats-redux-kernels-edition
kg download
7z x *.zip
I split the data into 23000 train and 2000 validation sets.
dogs-vs-cats-redux
├── data ─── dogscats
│ ├── train
│ │ ├── cats
│ │ └── dogs
│ ├── valid
│ │ ├── cats
│ │ └── dogs
│ ├── test
│ │ └── unknown
│ ├── models
│ └── results
├── submissions
│ └── submission1.csv
├── dogs_cats_redux_ensemble.ipynb
└── README.md
dogs_cats_redux_ensemble.ipynb
for final model
xception_example.py
- example of Xception prediction
resnet50_example.py
- example of ResNet50 prediction
inception_resnet_v2_example.py
- example of Inception-ResNet-V2 prediction