GitXplorerGitXplorer
U

unstructured-api-tools

public
28 stars
11 forks
3 issues

Commits

List of commits on branch main.
Verified
634370e9591dff36830b225d20d5b4995a61e24a

chore: bump version for release (#181)

aawalker4 committed a year ago
Verified
630aea8cd803e11af79199050aa0aff656c68272

Add metrics filter to running list of filters on logger (#180)

rrbiseck3 committed 2 years ago
Verified
f606b23a4110bc61b7b332a6698236546373667b

add a filter to not log calls to metrics endpoint (#179)

ttabossert committed 2 years ago
Verified
cc4f9214d04563c50508897ee581aa1576ecd554

CSV output formatting fix (#176)

rrbiseck3 committed 2 years ago
Verified
6fb09cd6df2e60063ac2e0a0fb8abc4cf02cb1da

Add autoflake formatting with duplicate import removal (#178)

rrbiseck3 committed 2 years ago
Verified
3b9b79effab2eac26c420229a743a9cb0cd48b3f

chore: update all bash scripts to use shebang: /usr/bin/env bash (#177)

rryannikolaidis committed 2 years ago

README

The README file for this repository.

Open-Source Pre-Processing Tools for Unstructured Data

The unstructured_api_tools library includes utilities for converting pipeline notebooks into REST API applications. unstructured_api_tools is intended for use in conjunction with pipeline repos. See pipeline-sec-filings for an example of a repo that uses unstructured_api_tools.

Installation

To install the library, run pip install unstructured_api_tools.

Developer Quick Start

  • Using pyenv to manage virtualenv's is recommended

    • Mac install instructions. See here for more detailed instructions.
      • brew install pyenv-virtualenv
      • pyenv install 3.8.15
    • Linux instructions are available here.
  • Create a virtualenv to work in and activate it, e.g. for one named unstructured_api_tools:

    pyenv virtualenv 3.8.15 unstructured_api_tools
    pyenv activate unstructured_api_tools

  • Run make install-project-local

Usage

Use the CLI command to convert pipeline notebooks to scripts, for example:

unstructured_api_tools convert-pipeline-notebooks \
  --input-directory pipeline-family-sec-filings/pipeline-notebooks \
  --output-directory pipeline-family-sec-filings/prepline_sec_filings/api \
  --pipeline-family sec-filings \
  --semver 0.2.1

If you do not provide the pipeline-family and semver arguments, those values are parsed from preprocessing-pipeline-family.yaml. You can provide the preprocessing-pipeline-family.yaml file explicitly with --config-filename or the PIPELINE_FAMILY_CONFIG environment variable. If neither of those is specified, the fallback is to use the preprocessing-pipeline-family.yaml file in the current working directory.

The API file undergoes black, flake8 and mypy checks after being generated. If you want flake8 to ignore specific errors, you can specify them through the CLI with --flake8-ignore F401, E402. See the flake8 docs for a full list of error codes.

Conversion from pipeline_api to FastAPI

The command described in Usage generates a FastAPI API route for each pipeline_api function defined in the notebook. The signature of the pipeline_api method determines what parameters the generated FastAPI accepts.

Currently, only plain text file uploads are supported and as such the first argument must always be text, but support for multiple files and binary files is coming soon!

In addition, any number of string array parameters may be specified. Any kwarg beginning with m_ indicates a multi-value string parameter that is accepted by the FastAPI API.

For example, in a notebook containing:

def pipeline_api(text, m_subject=[], m_name=[]):

text represents the content of a file posted to the FastAPI API, and the m_subject and m_name keyword args represent optional parameters that may be posted to the API as well, both allowing multiple string parameters. A curl request against such an API could look like this:

curl -X 'POST' \
  'https://<hostname>/<pipeline-family-name>/<pipeline-family-version>/<api-name>' \
  -H 'accept: application/json'  \
  -H 'Content-Type: multipart/form-data' \
  -F 'file=@file-to-process.txt' \
  -F 'subject=art' \
  -F 'subject=history'
  -F 'subject=math' \
  -F 'name=feynman'

In addition, you can specify the response type if pipeline_api can support both "application/json" and "text/csv" as return types.

For example, in a notebook containing a kwarg response_type:

def pipeline_api(text, response_type="text/csv", m_subject=[], m_name=[]):

The consumer of the API may then specify "text/csv" as the requested response content type with the usual HTTP Accept header, e.g. Accept: application/json or Accept: text/csv.

Security Policy

See our security policy for information on how to report security vulnerabilities.

Learn more

Section Description
Company Website Unstructured.io product and company info