GitXplorerGitXplorer
Y

Expression

public
6 stars
1 forks
4 issues

Commits

List of commits on branch master.
Unverified
795d2602284fb9c03c98d9e6987527d35dbee56e

update dependencies

YYaffle committed 2 months ago
Unverified
ca498f428889f3d33d3f148c89d22d1789694849

fix isPrime.js location

YYaffle committed 2 months ago
Unverified
118853964efc0b0b1c638926fc50a1187a6e61ce

complex logarithm and some fixes and improvements to arctan and derivative

YYaffle committed a year ago
Unverified
c52885090bf4516596c9b5196f60b55872d4709f

change link to demo page

YYaffle committed a year ago
Unverified
2d3efe11adb021b6a3a08852af8c1d504b88b34e

rename demo.html to index.html

YYaffle committed a year ago
Verified
f161a293ae984651a0daa9ddd098b67b77b3433d

Update demo.html

YYaffle committed a year ago

README

The README file for this repository.

It is a homemade library for JavaScript. It can parse expressions, solve and simplify systems of linear equations, find eigenvalues and eigenvectors, or calculate real roots of polynomials with integer coefficients for a specified accuracy.

Installation

npm install @yaffle/expression or npm install Yaffle/Expression

Usage example

example.mjs:

  import {ExpressionParser, Polynomial, Expression} from './node_modules/@yaffle/expression/index.js';

  // Exact polynomial roots can be found for some polynomials:
  var p = Polynomial.toPolynomial(ExpressionParser.parse("10x^5−17x^4−505x^3+1775x^2−249x−630"), ExpressionParser.parse("x"));
  console.log(p.getroots().toString()); // -1/2,5,21/5,(-73^0.5-7)/2,(73^0.5-7)/2

  // Polynomial roots:
  var p = Polynomial.toPolynomial(ExpressionParser.parse("x^5−2x^4−11x^3+26x^2−2x−13"), ExpressionParser.parse("x"));
  console.log(p.getZeros().map(x => x.toString({rounding: {fractionDigits: 20}})).toString()); // -3.41190231035920486644,-0.60930943815581736137,1.07534597839596488553,1.92498144931467217779,3.02088432080438516449

  // parse a matrix from a string:
  var matrix = ExpressionParser.parse('{{1,2,3},{4,5,6},{7,8,9}}').matrix;
  console.log('matrix: ' + matrix.toString()); // matrix: {{1,2,3},{4,5,6},{7,8,9}}

  var eigenvalues = Expression.getEigenvalues(matrix);
  console.log('eigenvalues: ' + eigenvalues.toString()); // eigenvalues: 0,(-3*33^0.5+15)/2,(3*33^0.5+15)/2
  console.log('eigenvalues: ' + eigenvalues.map(x => x.toMathML({rounding: {fractionDigits: 10}}))); // eigenvalues: <mn>0</mn>,<mrow><mo>&minus;</mo><mn>1.1168439698</mn></mrow>,<mn>16.1168439698</mn>

  var eigenvectors = Expression.getEigenvectors(matrix, eigenvalues);
  console.log('eigenvectors: ' + eigenvectors.toString()); // eigenvectors: {{1},{-2},{1}},{{(-3*33^0.5-11)/22},{(-3*33^0.5+11)/44},{1}},{{(3*33^0.5-11)/22},{(3*33^0.5+11)/44},{1}}

  var y = Expression.diagonalize(matrix, eigenvalues, eigenvectors);
  console.log('diagonalization: ' + matrix.toString() + ' = ' + y.T.toString() + " * " + y.L.toString() + " * " + y.T_INVERSED.toString()); // diagonalization: {{1,2,3},{4,5,6},{7,8,9}} = {{1,(-3*33^0.5-11)/22,(3*33^0.5-11)/22},{-2,(-3*33^0.5+11)/44,(3*33^0.5+11)/44},{1,1,1}} * {{0,0,0},{0,(-3*33^0.5+15)/2,0},{0,0,(3*33^0.5+15)/2}} * {{1/6,-1/3,1/6},{(-33^0.5-1)/12,(-33^0.5+3)/18,(-33^0.5+15)/36},{(33^0.5-1)/12,(33^0.5+3)/18,(33^0.5+15)/36}}

  //var y = Expression.getFormaDeJordan(...);

  // Compute the first 100 digits of the square root of 2:
  console.log(ExpressionParser.parse('sqrt(2)').toMathML({rounding: {fractionDigits: 100}})); // <mn>1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727</mn>

  // simplify an expression:
  const simplify = ExpressionParser.parse;
  console.log(simplify('x * y * -x / (x ^ 2)').toString()) // '-y'

  // parsing with substitutions:
  var result = ExpressionParser.parse('A*B', new ExpressionParser.Context(function (id) {
    if (id === 'A') {
      return ExpressionParser.parse('{{1,2},{3,4}}');
    }
    if (id === 'B') {
      return ExpressionParser.parse('{{-4,2},{3,-1}}');
    }
  })).simplify();
  console.log(result.toString());

  // Square root of a matrix:
  console.log(ExpressionParser.parse('{{33,24},{48,57}}**(1/2)').toString()); // {{5,2},{4,7}}

  // Nth-root of a matrix:
  console.log(ExpressionParser.parse('{{33,24},{48,57}}**(1/n)').toString()); // {{(3^(4/n)+2*3^(2/n))/3,(3^(4/n)-3^(2/n))/3},{(2*3^(4/n)-2*3^(2/n))/3,(2*3^(4/n)+3^(2/n))/3}}

  // Nth-power of a matrix:
  console.log(ExpressionParser.parse('{{33,24},{48,57}}**n').toString()); // {{(3^(4*n)+2*3^(2*n))/3,(3^(4*n)-3^(2*n))/3},{(2*3^(4*n)-2*3^(2*n))/3,(2*3^(4*n)+3^(2*n))/3}}

  // Note: toLaTeX is deprecated
  import './node_modules/@yaffle/expression/toLaTeX.js';
  console.log(ExpressionParser.parse('{{1,2},{3,4}}').toLaTeX()); // \begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}

to run from a webbrowser create example.mjs (see above), example.html, npm install http-server, npx http-server, and open it in a web browser:

<meta charset="utf-8" />
<script type="module" src="example.mjs"></script>

See the console output.

to run from the node.js create example.mjs (see above), then run:

npm install @yaffle/expression --save
node --experimental-modules example.mjs

Types

  nthRoot(a, n)
  primeFactor(a)
  Matrix
    .I(size)
    .Zero(rows, cols)
    rows()
    cols()
    e(row, column) - get element
    isSquare()
    map(mapFunction)
    transpose()
    scale(x)
    multiply(b)
    add(b)
    subtract(b)
    augment(b)
    rowReduce(...)
    swapRows(...)
    toRowEchelon(...)
    determinant()
    rank()
    inverse()
    toString()
    pow(n)
    eql()
  Polynomial
    .ZERO
    .of(a0, a1, ...)
    .from(arrayLike)
    .pseudoRemainder(p1, p2)
    .polynomialGCD(p1, p2)
    .resultant(p1, p2)
    .toPolynomial(expression, variable)

    #getDegree()
    #getCoefficient(index)
    #getLeadingCoefficient() - same as p.getCoefficient(p.getDegree())
    #getContent()

    #add(other)
    #multiply(other)
    #scale(coefficient)
    #shift(n)
    #divideAndRemainder(other)
    #modularInverse(m)

    #getroots()
    #getZeros([precision, complex])
    #numberOfRoots(interval)
    #calcAt(point)

    #_exponentiateRoots(n)
    #_scaleRoots(s)
    #_translateRoots(h)

    #factorize() - find some factor of a polynomial with integer coefficients
  ExpressionParser
    parse(string, context)
  Expression
    .ZERO
    .ONE
    .TWO
    .TEN
    .PI
    .E
    .I
    #add
    #subtract
    #multiply
    #divide
    #pow
    #equals
    #toString()
    #toMathML()
    #toLaTeX()
      Expression.Integer
        integer
      Expression.Symbol
        symbol
      Expression.NthRoot
        radicand
      Expression.Matrix
        matrix
      Expression.Polynomial
        polynomial
      Expression.Sin
        argument
      Expression.Cos
        argument
      Expression.Complex
        real
        imaginary
      Expression.ExpressionPolynomialRoot
        root

DEMO

demo page

Similar projects