GitXplorerGitXplorer
a

lepard

public
1 stars
0 forks
0 issues

Commits

List of commits on branch main.
Verified
cb2437441c6f29650292fd8ed3cfe1fed8493bf2

Create README_ASTRIVIS.md

aaiday-mar committed 2 years ago
Unverified
d563ab231f0a29a183acd377990a12fc125a5af9

changing the pretrained to 8th epoch and setting the floor for next epoch

aaiday-mar committed 2 years ago
Unverified
05646b1be4847bd9a3673ab776654086da007183

using starting epoch 7 for pretrained weights and setting next epoch to 8

aaiday-mar committed 2 years ago
Unverified
6abda792dc35e83271951581b979e02fe566099e

changing the network which should be used

committed 2 years ago
Unverified
277bd455accfa57bfd4ff57660cfb8b55994aee0

taking the data_type inside of the config object

aaiday-mar committed 2 years ago
Unverified
28ac828a5024f8d88494a0187a65923fbe8241ac

printing instead the datat_type variable inside of the self.config variable

aaiday-mar committed 2 years ago

README

The README file for this repository.

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper]

drawing

Method overview

drawing

4DMatch Benchmark

4DMatch is a benchmark for matching and registration of partial point clouds with time-varying geometry. It is constructed using randomly selected 1761 sequences from DeformingThings4D. Below shows point cloud pairs with different overlap ratios.

drawing

Installation

We tested the code on python 3.8.10; Pytroch version '1.7.1' or '1.9.0+cu111'; GPU model GeForce RTX-2080 or Nvidia A100.

conda env create -f environment.yml
conda activate lepard
cd cpp_wrappers; sh compile_wrappers.sh; cd ..

Download data and pretrained model

Train and evaluation on 4DMatch

Download and extract the 4DMatch split to your custom folder. Then update the data_root in configs/train/4dmatch.yaml and configs/test/4dmatch.yaml

  • Evaluate pre-trained
python main.py configs/test/4dmatch.yaml

(To switch between 4DMatch and 4DLoMatch benchmark, modify the split configuration in configs/test/4dmatch.yaml)

  • Train from scratch
python main.py configs/train/4dmatch.yaml

Intergration to Non-rigid Registration

An exmaple can be found here: Nonrigid-ICP-Pytorch

Train and evaluation on 3DMatch

Download and extract the 3DMatch split to your custom folder. Then update the data_root in configs/train/3dmatch.yaml and configs/test/3dmatch.yaml

  • Evaluate pre-trained
python main.py configs/test/3dmatch.yaml

(To switch between 3DMatch and 3DLoMatch benchmark, modify the split configuration in configs/test/3dmatch.yaml)

  • Train from scratch
python main.py configs/train/3dmatch.yaml

Citation

If you use Lepard code or 4DMatch data please cite:

@article{lepard2021, 
    title={Lepard: Learning partial point cloud matching in rigid and deformable scenes.}, 
    author={Yang Li and Tatsuya Harada},
    journal={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}
}