GitXplorerGitXplorer
a

lazyreader

public
10 stars
1 forks
0 issues

Commits

List of commits on branch master.
Verified
918c408efba015efc1d67b05d1e4b373ac9d1192

Fix the 'publish' command in the setup.py

aalexwlchan committed 7 years ago
Unverified
fe0960e2247b435ad6713e1ca310c4da5b0f4b12

Merge pull request #3 from alexwlchan/boto3-bug

aalexwlchan committed 7 years ago
Verified
8dbb2d50595c54e14cc7fca1e7532a1c2aa0412a

Add test to get 100% coverage

aalexwlchan committed 7 years ago
Verified
574bbb0c76e3d3059bf6bffab1f19242afd40f5f

Add a changelog for v1.0.1

aalexwlchan committed 7 years ago
Verified
16fc666710420538b3e574acc7c6dedd1bde20b6

Don't throw an IncompleteReadException when reading from boto3

aalexwlchan committed 7 years ago
Verified
12d76c7e3d5aa28905ccc0b784dbeac9d54f2d35

Fix the boto3 example in the README

aalexwlchan committed 7 years ago

README

The README file for this repository.

lazyreader

lazyreader is a Python module for doing lazy reading of file objects.

The Python standard library lets you read a file a line-at-a-time, saving you from loading the entire file into memory. For example:

.. code-block:: python

with open('large_file.txt') as f: for line in f: print(line)

lazyreader lets you do the same thing, but with an arbitrary delimiter, and for any object that presents a .read() method. For example:

.. code-block:: python

from lazyreader import lazyread

with open('large_file.txt') as f: for doc in lazyread(f, delimiter=';'): print(doc)

This is a snippet of code I spun out from the Wellcome Digital Platform <https://github.com/wellcometrust/platform-api>_. We have large XML and JSON files stored in S3 -- sometimes multiple GBs -- but each file is really a series of "documents", separated by known delimiters. Downloading and parsing the entire file would be prohibitively expensive, but lazyreader allows us to hold just a single document in memory at a time.

Installation


lazyreader is available from PyPI:

.. code-block:: console

$ pip install lazyreader

Examples


If we have a file stored locally, we can open it and split based on any choice of delimiter. For example, if we had a text file in which record were separated by commas:

.. code-block:: python

with open('lots_of_records.txt') as f: for doc in lazyread(f, delimiter=','): print(doc)

Another example: we have a file stored in Amazon S3, and we'd like to read it line-by-line. The boto3 <https://boto3.readthedocs.io/en/stable/>_ API gives us a file object for reading from S3:

.. code-block:: python

import boto3

client = boto3.client('s3') s3_object = client.get_object(Bucket='example-bucket', Key='words.txt') body = s3_object['Body']

for doc in lazyread(body, delimiter=b'\n'): print(doc)

(This is the use case for which this code was originally written.)

One more example: we're fetching an HTML page, and want to read lines separated by <br> in the underlying HTML. Like so:

.. code-block:: python

import urllib.request

with urllib.request.urlopen('https://example.org/') as f: for doc in lazyread(f, delimiter=b'
'): print(doc)

Advanced usage


lazyread() returns a generator, which you can wrap to build a pipeline of generators which do processing on the data.

First example: we have a file which contains a list of JSON objects, one per line. (This is the format of output files from elasticdump <https://github.com/taskrabbit/elasticsearch-dump>_.) What the caller really needs is Python dictionaries, not JSON strings. We can wrap lazyread() like so:

.. code-block:: python

import json

def lazyjson(f, delimiter=b'\n'): for doc in lazyread(f, delimiter=delimiter):

       # Ignore empty lines, e.g. the last line in a file
       if not doc.strip():
           continue

       yield json.loads(doc)

Another example: we want to parse a large XML file, but not load it all into memory at once. We can write the following wrapper:

.. code-block:: python

from lxml import etree

def lazyxmlstrings(f, opening_tag, closing_tag): for doc in lazyread(f, delimiter=closing_tag): if opening_tag not in doc: continue

       # We want complete XML blocks, so look for the opening tag and
       # just return its contents
       block = doc.split(opening_tag)[-1]
       yield opening_tag + block

def lazyxml(f, opening_tag, closing_tag): for xml_string in lazyxmlstrings(f, opening_tag, closing_tag): yield etree.fromstring(xml_string)

We use both of these wrappers at Wellcome to do efficient processing of large files that are kept in Amazon S3.

Isn't this a bit simple to be a module?


Maybe. There are recipes on Stack Overflow that do very similar, but I find it useful to have in a standalone module.

And it's not completely trivial -- at least, not for me. I made two mistakes when I first wrote this:

  • I was hard-coding the initial running string as

    .. code-block:: python

    running = b''

    That only works if your file object is returning bytestrings. If it's returning Unicode strings, you get a TypeError (can't concat bytes to str) when it first tries to read from the file. String types are important!

  • After I'd read another 1024 characters from the file, I checked for the delimiter like so:

    .. code-block:: python

    running += new_data if delimiter in running: curr, running = running.split(delimiter) yield curr + delimiter

    For my initial use case, individual documents were much bigger than 1024 characters, so the new data would never contain multiple delimiters. But with smaller documents, you might get multiple delimiters in one read, and then unpacking the result of .split() would throw a ValueError. So now the code correctly checks and handles the case where a single read includes more than one delimiter.

Now it's encoded and tested in a module, I don't have to worry about making the same mistakes again.

License


MIT.