GitXplorerGitXplorer
a

wandb-audit-example

public
1 stars
0 forks
0 issues

Commits

List of commits on branch master.
Unverified
0e629bf48f13ffdac95aca7e6b07d43f5df5ebbe

Update s3 script to use Metadata

aamaarora committed 3 years ago
Unverified
a9064f56bcba714afb5cb45aa9c80e32835db289

Update format

aamaarora committed 3 years ago
Unverified
bb14de501adb6f4eb3a8ff48be9a05c7e509c92c

Update README

aamaarora committed 3 years ago
Unverified
696eed15e03e3eca2d0b1d49d032252ca9c39efd

Add logger info

aamaarora committed 3 years ago
Unverified
28c2fb1b8b63e164911eb517d9acab6fb19dbaf8

Use artifact.digest instead of readable hash

aamaarora committed 3 years ago
Unverified
2a934ba12f5ae66435b1e7a4575b9d376b456324

Polish repo

aamaarora committed 3 years ago

README

The README file for this repository.

wandb-audit-example

This is a simple example to showcase Weights and Biases artifacts. As part of this example, we train EfficientNet-B3 on Imagenette Dataset.

For a complete report that explains using W&B for compliance and audit purpose, please refer here.

Prepare Dataset

To prepare the dataset, run the following lines of code in the root folder of this directory:

mkdir data && cd data 
wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz
tar -xvf imagenette2-160.tgz

Now you should have a data directory in the repository whose folder structure looks like:

data/
└── imagenette2-160
    ├── train
    │   ├── n01440764
    │   ├── n02102040
    │   ├── n02979186
    │   ├── n03000684
    │   ├── n03028079
    │   ├── n03394916
    │   ├── n03417042
    │   ├── n03425413
    │   ├── n03445777
    │   └── n03888257
    └── val
        ├── n01440764
        ├── n02102040
        ├── n02979186
        ├── n03000684
        ├── n03028079
        ├── n03394916
        ├── n03417042
        ├── n03425413
        ├── n03445777
        └── n03888257

Start Model Training

From the root of this folder, simply run:

python src/train.py

Upload model artifact from W&B to AWS S3

For this script to work:

  1. Please make sure that you have setup AWSCLI
  2. Please make sure that you read/write permissions to AWS bucket

After, simply run:

python src/upload_artifact_to_s3.py --project <enter-wandb-project-name> --filename <enter-artifact-name> --alias <enter-alias> --bucket <enter-aws-bucket>