Update: this repository is out of date. It contains strictly less useful code than the repository at the following URL:
https://github.com/carlini/nn_robust_attacks
In particular, do not use the l0 attack in this repository; it is only good at breaking defensive distillation (not other attacks).
Defensive Distillation was recently proposed as a defense to adversarial examples.
Unfortunately, distillation is not secure. We show this in our paper, at http://nicholas.carlini.com/papers/2016_defensivedistillation.pdf We strongly believe that research should be reproducible, and so our releasing the code required to train a baseline model on MNIST, train a defensively distilled model on MNIST, and attack the defensively distilled model.
To run the code, you will need Python 3.x with TensorFlow. It will be slow unless you have a GPU to train on.
Begin by running train_baseline.py and train_distillation.py; that will create three model files, two of which are useful. They should report final accuracy around 99.3% +/-0.2%.
To construct adversarial examples, run l0_attack.py passing as argument either models/baseline models/distilled. This will run the modified l0 adversary on the given model. The success probability should be ~95% modifying ~35 pixels.