GitXplorerGitXplorer
d

vladiate

public
91 stars
31 forks
13 issues

Commits

List of commits on branch master.
Verified
538e93e1870e402b859a80ed2ed6f16a2dc3f372

Add missing docs for row_validators attribute (#94)

jjonafato committed 10 months ago
Verified
48f92e1623f5833caf845d1b996f489492a537ec

Update supported Python versions (#92)

jjonafato committed 10 months ago
Verified
d831d625e05181b21ce48bb34d357811a4c887a2

Version 0.0.26 (#91)

ddi committed a year ago
Verified
1a8e9018763d4ea69b58952b39c2fede1e88a52a

Add threshold for file validations (#89)

hharitha-ravi committed a year ago
Verified
7c3e3d44b7a8f434e56ef3a4b4c714f6b8543eb6

Version 0.0.25 (#87)

ddi committed a year ago
Verified
4310ffb1f2873da9690c9c10f6830f843c4e2562

Fixup readme badges, remove travis config (#85)

jjonafato committed 2 years ago

README

The README file for this repository.

Vladiate

.. image:: https://github.com/di/vladiate/actions/workflows/test.yml/badge.svg?query=branch%3Amaster+event%3Apush :target: https://github.com/di/vladiate/actions/workflows/test.yml?query=branch%3Amaster+event%3Apush

.. image:: https://coveralls.io/repos/di/vladiate/badge.svg?branch=master :target: https://coveralls.io/github/di/vladiate

Description

Vladiate helps you write explicit assertions for every field of your CSV file.

Features

Write validation schemas in plain-old Python No UI, no XML, no JSON, just code.

Write your own validators Vladiate comes with a few by default, but there's no reason you can't write your own.

Validate multiple files at once Either with the same schema, or different ones.

Documentation

Installation


Installing:

::

    $ pip install vladiate

Quickstart
~~~~~~~~~~

Below is an example of a ``vladfile.py``

.. code:: python

    from vladiate import Vlad
    from vladiate.validators import UniqueValidator, SetValidator
    from vladiate.inputs import LocalFile

    class YourFirstValidator(Vlad):
        source = LocalFile('vampires.csv')
        validators = {
            'Column A': [
                UniqueValidator()
            ],
            'Column B': [
                SetValidator(['Vampire', 'Not A Vampire'])
            ]
        }

Here we define a number of validators for a local file ``vampires.csv``,
which would look like this:

::

    Column A,Column B
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire

We then run ``vladiate`` in the same directory as your ``.csv`` file:

::

    $ vladiate

And get the following output:

::

    Validating YourFirstValidator(source=LocalFile('vampires.csv'))
    Passed! :)

Handling Changes
^^^^^^^^^^^^^^^^

Let's imagine that you've gotten a new CSV file,
``potential_vampires.csv``, that looks like this:

::

    Column A,Column B
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire
    Ronald Reagan,Maybe A Vampire

If we were to update our first validator to use this file as follows:

::

    - class YourFirstValidator(Vlad):
    -     source = LocalFile('vampires.csv')
    + class YourFirstFailingValidator(Vlad):
    +     source = LocalFile('potential_vampires.csv')

we would get the following error:

::

    Validating YourFirstFailingValidator(source=LocalFile('potential_vampires.csv'))
    Failed :(
      SetValidator failed 1 time(s) (25.0%) on field: 'Column B'
        Invalid fields: ['Maybe A Vampire']

And we would know that we'd either need to sanitize this field, or add
it to the ``SetValidator``.

Starting from scratch
^^^^^^^^^^^^^^^^^^^^^

To make writing a new ``vladfile.py`` easy, Vladiate will give
meaningful error messages.

Given the following as ``real_vampires.csv``:

::

    Column A,Column B,Column C
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire
    Ronald Reagan,Maybe A Vampire

We could write a bare-bones validator as follows:

.. code:: python

    class YourFirstEmptyValidator(Vlad):
        source = LocalFile('real_vampires.csv')
        validators = {}

Running this with ``vladiate`` would give the following error:

::

    Validating YourFirstEmptyValidator(source=LocalFile('real_vampires.csv'))
    Missing...
      Missing validators for:
        'Column A': [],
        'Column B': [],
        'Column C': [],

Vladiate expects something to be specified for every column, *even if it
is an empty list* (more on this later). We can easily copy and paste
from the error into our ``vladfile.py`` to make it:

.. code:: python

    class YourFirstEmptyValidator(Vlad):
        source = LocalFile('real_vampires.csv')
        validators = {
            'Column A': [],
            'Column B': [],
            'Column C': [],
        }

When we run *this* with ``vladiate``, we get:

::

    Validating YourSecondEmptyValidator(source=LocalFile('real_vampires.csv'))
    Failed :(
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column A'
        Invalid fields: ['Dracula', 'Vlad the Impaler', 'Count Chocula', 'Ronald Reagan']
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column B'
        Invalid fields: ['Maybe A Vampire', 'Not A Vampire', 'Vampire']
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column C'
        Invalid fields: ['Real', 'Not Real']

This is because Vladiate interprets an empty list of validators for a
field as an ``EmptyValidator``, which expects an empty string in every
field. This helps us make meaningful decisions when adding validators to
our ``vladfile.py``. It also ensures that we are not forgetting about a
column or field which is not empty.

Built-in Validators
^^^^^^^^^^^^^^^^^^^

Vladiate comes with a few common validators built-in:

*class* ``Validator``

  Generic validator. Should be subclassed by any custom validators. Not to
  be used directly.

*class* ``CastValidator``

  Generic "can-be-cast-to-x" validator. Should be subclassed by any
  cast-test validator. Not to be used directly.

*class* ``IntValidator``

  Validates whether a field can be cast to an ``int`` type or not.

  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``FloatValidator``

  Validates whether a field can be cast to an ``float`` type or not.

  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``SetValidator``

  Validates whether a field is in the specified set of possible fields.

  :``valid_set=[]``:
      List of valid possible fields
  :``empty_ok=False``:
      Implicity adds the empty string to the specified set.
  :``ignore_case=False``:
      Ignore the case between values in the column and valid set

*class* ``UniqueValidator``

  Ensures that a given field is not repeated in any other column. Can
  optionally determine "uniqueness" with other fields in the row as well via
  ``unique_with``.

  :``unique_with=[]``:
      List of field names to make the primary field unique with.
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``RegexValidator``

  Validates whether a field matches the given regex using `re.match()`.

  :``pattern=r'di^'``:
      The regex pattern. Fails for all fields by default.
  :``full=False``:
      Specify whether we should use a fullmatch() or match().
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``RangeValidator``

  Validates whether a field falls within a given range (inclusive). Can handle
  integers or floats.

  :``low``:
      The low value of the range.
  :``high``:
      The high value of the range.
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``EmptyValidator``

  Ensure that a field is always empty. Essentially the same as an empty
  ``SetValidator``. This is used by default when a field has no
  validators.

*class* ``NotEmptyValidator``

  The opposite of an ``EmptyValidator``. Ensure that a field is never empty.

*class* ``Ignore``

  Always passes validation. Used to explicity ignore a given column.

*class* ``RowValidator``

  Generic row validator. Should be subclassed by any custom validators. Not
  to be used directly.

*class* ``RowLengthValidator``

  Validates that each row has the expected number of fields. The expected
  number of fields is inferred from the CSV header row read by
  ``csv.DictReader``.

Built-in Input Types
^^^^^^^^^^^^^^^^^^^^

Vladiate comes with the following input types:

*class* ``VladInput``

  Generic input. Should be subclassed by any custom inputs. Not to be used
  directly.

*class* ``LocalFile``

  Read from a file local to the filesystem.

  :``filename``:
      Path to a local CSV file.

*class* ``S3File``

  Read from a file in S3. Optionally can specify either a full path, or a
  bucket/key pair.

  Requires the `boto <https://github.com/boto/boto>`_ library, which should be
  installed via ``pip install vladiate[s3]``.

  :``path=None``:
      A full S3 filepath (e.g., ``s3://foo.bar/path/to/file.csv``)

  :``bucket=None``:
      S3 bucket. Must be specified with a ``key``.

  :``key=None``:
      S3 key. Must be specified with a ``bucket``.

*class* ``String``

  Read CSV from a string. Can take either an ``str`` or a ``StringIO``.

  :``string_input=None``
      Regular Python string input.

  :``string_io=None``
      ``StringIO`` input.

Running Vlads Programatically
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*class* ``Vlad``

  Initialize a Vlad programatically

  :``source``:
      Required. Any `VladInput`.

  :``validators={}``:
      List of validators. Optional, defaults to the class variable `validators`
      if set, otherwise uses `EmptyValidator` for all fields.

  :``row_validators=[]``:
      List of row-level validators. Validators provided here operate on entire
      rows and can be used to define constraints that involve more than one
      field. Optional, defaults to the class variable `row_validators` if set,
      otherwise `[]`, which does not perform any row-level validation.

  :``delimiter=','``:
      The delimiter used within your csv source. Optional, defaults to `,`.

  :``ignore_missing_validators=False``:
      Whether to fail validation if there are fields in the file for which the
      `Vlad` does not have validators. Optional, defaults to `False`.

  :``quiet=False``:
      Whether to disable log output generated by validations.
      Optional, defaults to `False`.

  :``file_validation_failure_threshold=None``:
      Stops validating the file after this failure threshold is reached.
      Input a value between `0.0` and `1.0`. `1.0`(100%) validates the entire file.
      Optional, defaults to `None`.

  For example:

.. code:: python

    from vladiate import Vlad
    from vladiate.inputs import LocalFile
    Vlad(source=LocalFile('path/to/local/file.csv')).validate()

Testing
~~~~~~~

To run the tests:

::

    make test

To run the linter:

::

    make lint

Command Line Arguments

.. code:: bash

Usage: vladiate [options] [VladClass [VladClass2 ... ]]

Options:
  -h, --help            show this help message and exit
  -f VLADFILE, --vladfile=VLADFILE
                        Python module file to import, e.g. '../other.py'.
                        Default: vladfile
  -l, --list            Show list of possible vladiate classes and exit
  -V, --version         show version number and exit
  -p PROCESSES, --processes=PROCESSES
                        attempt to use this number of processes, Default: 1
  -q, --quiet           disable console log output generated by validations

Contributors

  • Dustin Ingram <https://github.com/di>__
  • Clara Bennett <https://github.com/csojinb>__
  • Aditya Natraj <https://github.com/adityanatra>__
  • Sterling Petersen <https://github.com/sterlingpetersen>__
  • Aleix <https://github.com/maleix>__
  • Bob Lannon <https://github.com/boblannon>__
  • Santi <https://github.com/santilytics>__
  • David Park <https://github.com/dp247>__
  • Jon Banafato <https://github.com/jonafato>__
  • haritha-ravi <https://github.com/haritha-ravi>__

License

Open source MIT license.