GitXplorerGitXplorer
e

learning_to_plan

public
10 stars
1 forks
0 issues

Commits

List of commits on branch master.
Verified
bda8414c858aff2bb66492fa432219009132fcc5

Update README.md

eedbeeching committed 4 years ago
Verified
55d5fc9f4dc7b5d12067d5eaa4b1f1c95b094d50

Update README.md

eedbeeching committed 4 years ago
Unverified
9e54b63ce80f588a490ca824803faf6f64eaaede

created readme and code files

eedbeeching committed 4 years ago
Unverified
f994b8866828e3198fce135f8299f41595678f5c

created readme and code files

eedbeeching committed 4 years ago
Verified
f09bff437e1cbeedb395ce7604e6a90366db7f9f

Initial commit

eedbeeching committed 4 years ago

README

The README file for this repository.

Learning to Plan with Uncertain Topological Maps

This repository contains code for paper Learning to Plan with Uncertain Topological Maps ECCV 2020 (Spotlight)

Contents

  • Requirements
  • Dataset
  • Training
  • Pretrained model
  • Citation

Requirements:

pip install -R requirements.txt

Dataset

The dataset is make available on Zenodo https://zenodo.org/record/4003445 The dataset is 4.8 GB in size

mkdir data && cd data
wget -O graph_data3_distance_weights.gz  https://zenodo.org/record/4003445/files/file.data?download=1 
tar -xvzf graph_data3_distance_weights.gz

Training

Please use the following hyperparameters for training:

python train.py --data_path data/graph_data3_distance_weights/train --hidden_size 256 --batch_size 32 --max_grad_norm 2 --weight_decay 0.0001 --lr 0.001 --schedule 120 --n_steps 6 --data_limit 74000 --use_weights --normalize --gru_depth 2 --save_model --bound_update --new_bound_net --store_hidden --use_probs --use_features

Pretrained model

The pretrained model can be found in models/best_model.pth

Citation

If you find this useful, consider citing the following:

@inproceedings{beeching2020learntoplan,
  title={Learning to plan with uncertain topological maps.
  },
  author={Beeching, Edward and Dibangoye, Jilles and 
          Simonin, Olivier and Wolf, Christian}
  booktitle={European Conference on Computer Vision},
  year={2020}}