GitXplorerGitXplorer
f

pifuhd

public
9591 stars
1463 forks
96 issues

Commits

List of commits on branch main.
Verified
e47c4d918aaedd5f5608192b130bda150b1fb0ab

Merge pull request #164 from ipsavitsky/main

sshunsukesaito committed 2 years ago
Verified
a9fa3b35754d261bd1e12dfb1b09b91ce4547d92

Update README.md

sshunsukesaito committed 2 years ago
Unverified
fb1b851a6a8e75df982e376daef482d2a7c5fb56

replaced deprecated method

iipsavitsky committed 3 years ago
Verified
ee51fc23629c4afc99dbfd235c5b8bbd77a86aa2

Merge pull request #90 from benknight135/patch-1

sshunsukesaito committed 4 years ago
Verified
2f2826640b5994563fdfdf1083c4579c69044326

Merge branch 'master' into patch-1

sshunsukesaito committed 4 years ago
Verified
830e466a04243fcd8af61e6001a7c4629fdcafc8

Merge pull request #89 from 10xJSChad/master

sshunsukesaito committed 4 years ago

README

The README file for this repository.

report Open In Colab

News:

  • [2020/06/15] Demo with Google Colab (incl. visualization) is available! Please check out #pifuhd on Twitter for many results tested by users!

This repository contains a pytorch implementation of "Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization".

Teaser Image

This codebase provides:

  • test code
  • visualization code

See our blog post to learn more about our work at CVPR2020!

Demo on Google Colab

In case you don't have an environment with GPUs to run PIFuHD, we offer Google Colab demo. You can also upload your own images and reconstruct 3D geometry together with visualization. Try our Colab demo using the following notebook:
Open In Colab

Requirements

  • Python 3
  • PyTorch tested on 1.4.0, 1.5.0
  • json
  • PIL
  • skimage
  • tqdm
  • cv2

For visualization

  • trimesh with pyembree
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • ffmpeg

Note: At least 8GB GPU memory is recommended to run PIFuHD model.

Run the following code to install all pip packages:

pip install -r requirements.txt 

Download Pre-trained model

Run the following script to download the pretrained model. The checkpoint is saved under ./checkpoints/.

sh ./scripts/download_trained_model.sh

A Quick Testing

To process images under ./sample_images, run the following code:

sh ./scripts/demo.sh

The resulting obj files and rendering will be saved in ./results. You may use meshlab (http://www.meshlab.net/) to visualize the 3D mesh output (obj file).

Testing

  1. run the following script to get joints for each image for testing (joints are used for image cropping only.). Make sure you correctly set the location of OpenPose binary. Alternatively colab demo provides more light-weight cropping rectange estimation without requiring openpose.
python apps/batch_openpose.py -d {openpose_root_path} -i {path_of_images} -o {path_of_images}
  1. run the following script to run reconstruction code. Make sure to set --input_path to path_of_images, --out_path to where you want to dump out results, and --ckpt_path to the checkpoint. Note that unlike PIFu, PIFuHD doesn't require segmentation mask as input. But if you observe severe artifacts, you may try removing background with off-the-shelf tools such as removebg. If you have {image_name}_rect.txt instead of {image_name}_keypoints.json, add --use_rect flag. For reference, you can take a look at colab demo.
python -m apps.simple_test
  1. optionally, you can also remove artifacts by keeping only the biggest connected component from the mesh reconstruction with the following script. (Warning: the script will overwrite the original obj files.)
python apps/clean_mesh.py -f {path_of_objs}

Visualization

To render results with turn-table, run the following code. The rendered animation (.mp4) will be stored under {path_of_objs}.

python -m apps.render_turntable -f {path_of_objs} -ww {rendering_width} -hh {rendering_height} 
# add -g for geometry rendering. default is normal visualization.

Citation

@inproceedings{saito2020pifuhd,
  title={PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization},
  author={Saito, Shunsuke and Simon, Tomas and Saragih, Jason and Joo, Hanbyul},
  booktitle={CVPR},
  year={2020}
}

Relevant Projects

Monocular Real-Time Volumetric Performance Capture (ECCV 2020)
Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

The first real-time PIFu by accelerating reconstruction and rendering!!

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization (ICCV 2019)
Shunsuke Saito*, Zeng Huang*, Ryota Natsume*, Shigeo Morishima, Angjoo Kanazawa, Hao Li

The original work of Pixel-Aligned Implicit Function for geometry and texture reconstruction, unifying sigle-view and multi-view methods.

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019)
Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

We answer to the question of "how can we learn implicit function if we don't have 3D ground truth?"

SiCloPe: Silhouette-Based Clothed People (CVPR 2019, best paper finalist)
Ryota Natsume*, Shunsuke Saito*, Zeng Huang, Weikai Chen, Chongyang Ma, Hao Li, Shigeo Morishima

Our first attempt to reconstruct 3D clothed human body with texture from a single image!

Other Relevant Works

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020)
Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Learning PIFu in canonical space for animatable avatar generation!

Robust 3D Self-portraits in Seconds (CVPR 2020)
Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

They extend PIFu to RGBD + introduce "PIFusion" utilizing PIFu reconstruction for non-rigid fusion.

Deep Volumetric Video from Very Sparse Multi-view Performance Capture (ECCV 2018)
Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe LeGendre, Linjie Luo, Chongyang Ma, Hao Li

Implict surface learning for sparse view human performance capture!

License

CC-BY-NC 4.0. See the LICENSE file.