GitXplorerGitXplorer
g

plotintv

public
1 stars
0 forks
0 issues

Commits

List of commits on branch master.
Unverified
59f6f99ea0a5a2e43f08dc35f6e1be3354ae51dc

add license

ggsauthof committed 11 years ago
Unverified
2dcfeac4120c3804039827b0e51be2ae155725ec

add README

ggsauthof committed 11 years ago
Unverified
07ba26bc3fcef826205a6abe9e7d178fa08f15e5

add support for 3d plots

ggsauthof committed 11 years ago
Unverified
1d922ad5a0890bb387a50205cfc7c288e5d73d2a

add annotations, legend

ggsauthof committed 11 years ago
Unverified
da23d56fb0f07194270f9f6a70319be95eb3316a

add append opts, adjust options

ggsauthof committed 11 years ago
Unverified
6613f4f477f5ec26da808ed08c7e3aff5f1aff0f

add labels/legend

ggsauthof committed 11 years ago

README

The README file for this repository.

Script for plotting time interval based data.

It uses matplotlib and is thus written in Python.

The input file format is a simple comma separated one and matplotlib supports a bunch of output file formats (SVG, PNG, PDF, ...) - just specify a well known file extension. If no output file is specified the default matplotlib viewer is displayed, where the plot can be zoomed, rotated etc. The viewer also provides a save feature.

2013-08-23, Georg Sauthoff mail@georg.so

Usecases

Some data visualization where the input is inherently tied to time intervals. Examples:

  • Rows from a database table containing pairwise contracting information, and each pair may have multiple subcontracts. All contracts have an effective date and an enddate. The visualization may make certain patterns obvious, e.g. clusters, incomplete overlaps, gaps, illegal overlaps ...

  • Visualization of process runtimes in a batch environment.

  • Visualization of support intervals

Examples

Create 2D plot, where the x-axis is the time and the y-axis lists categories:

$ ./plotintv.py some.inp -s sub_cat_name_a -c color_a \
                         -s sub_cat_name_b -c color_b \
     --legend-pos='upper left' --ylabel main_cat_name

This launches the interactive matplotlib viewer.

For pairs of main categories there is a 3D mode:

$ ./plotintv.py some.inp -s sub_cat_name_a -c color_a \
                         -s sub_cat_name_b -c color_b \
     --ylabel main_cat_left_name --zlabel main_cat_right_name \
     --3d

See also --help for a complete list of options. Graphic files can be directly created, some default parameters are customizable.

Basics

Sub-categories are grouped together when displaying the main categories.

Input format

See the output of --help.

License

GPLv3+