GitXplorerGitXplorer
g

autocolorize

public
221 stars
63 forks
10 issues

Commits

List of commits on branch master.
Unverified
17d87c915de3a0e9bcbecdf5318c2fe730150d46

DOC: Update readme with ECCV 2016

ggustavla committed 8 years ago
Unverified
e4feca0a4d455f2e0cfdfab8d1d67f7569b37cba

Specify required numpy version

ggustavla committed 8 years ago
Unverified
b3c85786fbe2422287537eaf86a2fe4839270f0e

Starting 0.2.2

ggustavla committed 8 years ago
Unverified
e4a0f9eb302096c1c8f754253826812ff6c264de

REL: 0.2.1

ggustavla committed 8 years ago
Unverified
b0b4b62fae99e11664320e7402937ebdc5b47bd8

Add notes about sparse training

ggustavla committed 8 years ago
Unverified
ab1a2e2a36f2c9f5e5dc90c7a085163db3b2ce65

DOC: Add note about sparse training

ggustavla committed 8 years ago

README

The README file for this repository.

.. image:: https://img.shields.io/pypi/v/autocolorize.svg :target: https://pypi.python.org/pypi/autocolorize

autocolorize

Automatically colorize images using Machine Learning.

  • Project page <http://people.cs.uchicago.edu/~larsson/colorization/>__
  • ECCV 2016 paper (arXiv <http://arxiv.org/abs/1603.06668>__)

Installation

Make sure that you have Caffe (with Python bindings). Then run::

pip install autocolorize

Run::

autocolorize grayscale.png -o colorized.png

API

You can also colorize from Python (assuming grayscale is the image that you want to colorize)::

import autocolorize
classifier = autocolorize.load_default_classifier()
rgb = autocolorize.colorize(grayscale, classifier=classifier)

Sparse training

We provide custom layers for doing sparse hypercolumn training in both Caffe (see caffe/) and Tensorflow (see tensorflow/). This can be used for other image-to-image tasks, such as semantic segmentation or edge prediction.

Look inside the train folder if you want to train from scratch.