GitXplorerGitXplorer
j

pythonic-learning-machine

public
2 stars
3 forks
0 issues

Commits

List of commits on branch master.
Unverified
2ef9c0cd1fec384c2846a1809c0e44c179f4da5c

Strutural clean-up

committed 7 years ago
Unverified
450d23bbdd0a9b6aabcc6b78973ae8b993ce1138

Simplify code and update benchmark structure

committed 7 years ago
Unverified
8ec48c2a4e17af84b54a34b8bace41494c206720

Add sklearn algorithms and benchmark layer

committed 7 years ago
Unverified
b827d6ae27df7d677827d4cb71823fa6e3de88a9

Update data sets structure.

committed 7 years ago
Unverified
a3b626321baa8c88ecfcd2fc57083e50786b97c1

Add cleaning scripts

committed 7 years ago
Unverified
58ad38b91ff373c9c1a13d5afd62af6e6078849c

Add SGA

committed 7 years ago

README

The README file for this repository.

pythonic-learning-machine

Python implementation of the Semantic Learning Machine.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience