GitXplorerGitXplorer
j

Derain_OUCD_Net

public
15 stars
6 forks
2 issues

Commits

List of commits on branch main.
Verified
f0ee4442d6e7a1d8608ebecb6bcc36a1fa41ec29

Update README.md

jjeya-maria-jose committed 4 years ago
Verified
8ebac0ab51dec604b9e2599c09f454d1cff4682d

Update README.md

jjeya-maria-jose committed 4 years ago
Verified
5285d26ac77826c5e110462b922bc4e08493e2d7

Update README.md

jjeya-maria-jose committed 4 years ago
Verified
298f2aa089bfc1a155a8714266c8fa5b95525bad

Update README.md

jjeya-maria-jose committed 4 years ago
Verified
e5fa0b112307917fe7c878877ed46b1a52cfe23e

Update README.md

jjeya-maria-jose committed 4 years ago
Verified
b033c35fc9a8f7a63dd661d609e9f19cd17ba542

Update README.md

jjeya-maria-jose committed 4 years ago

README

The README file for this repository.

Derain_OUCD_Net

Official Pytorch Code for "Exploring Overcomplete Representations for Single Image Deraining using CNNs" - IEEE Journal of Selected Topics in Signal Processing

Paper

Prerequisites

  • Python >= 3.6
  • Pytorch >= 1.0
  • Torchvision >= 0.2.2
  • Numpy >= 1.14.3

Pytorch Installation

Datasets-Link:

  1. Rain800
  2. JORDER
  3. SPANet

Using the Code

Clone the repository

git clone https://github.com/jeya-maria-jose/Derain_OUCD_Net
cd Derain_OUCD_Net

Dataset structure

  1. Download the rain datasets and arrange the rainy images and clean images in the following order
  2. Save the image names into text file (dataset_filename.txt)
   .
    ├── data 
    |   ├── train # Training  
    |   |   ├── derain        
    |   |   |   ├── <dataset_name>   
    |   |   |   |   ├── rain              # rain images 
    |   |   |   |   └── norain            # clean images
    |   |   |   └── dataset_filename.txt
    |   └── test  # Testing
    |   |   ├── derain         
    |   |   |   ├── <dataset_name>          
    |   |   |   |   ├── rain              # rain images 
    |   |   |   |   └── norain            # clean images
    |   |   |   └── dataset_filename.txt

Choosing the dataset

Mention the txt file of the dataset in line 13 of train_data.py and val_data.py, for example

   train_list = train_data_dir + train_filename + "rain800.txt"
   val_list = val_data_dir + 'val_list_rain800.txt'

Training Command

python train.py -net OUCD -category derain -train_batch_size 2 -save_dir rain800_OUCD -num_epochs 200

Testing Command

Choose the model you want to load from the checkpoint. Change the epoch and bestp variables with the model you need to test. Then, run

python test.py -category derain -exp_name OUCD

Citation

@misc{yasarla2020exploring,
      title={Exploring Overcomplete Representations for Single Image Deraining using CNNs}, 
      author={Rajeev Yasarla and Jeya Maria Jose Valanarasu and Vishal M. Patel},
      year={2020},
      eprint={2010.10661},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}