GitXplorerGitXplorer
j

scikit-learn-tips

public
1725 stars
434 forks
1 issues

Commits

List of commits on branch master.
Unverified
21bdbf2d074c581dc3d8d16d72d3a04e6498d091

add links to videos 36 through 50

jjustmarkham committed 3 years ago
Unverified
6b809befa4af4ee8b53f3deb346fe5963c9ba115

add links to videos 31 through 35

jjustmarkham committed 3 years ago
Unverified
abb837f69304bef677307364bbfe7e8a0d792318

add links to videos 26 through 30

jjustmarkham committed 3 years ago
Unverified
d87a920dfe5fb26be9ecc23b317e4bf2daa3cfdd

add links to videos 21 through 25

jjustmarkham committed 3 years ago
Unverified
0610ffeb4a9eb84e8c5e3cc840f4e6e406cd64bd

add links to videos 16 through 20

jjustmarkham committed 4 years ago
Unverified
e13fa8821a1ec00b5494d120af82a9197a81c29c

add links to videos 13 through 15

jjustmarkham committed 4 years ago

README

The README file for this repository.

🤖⚡ scikit-learn tips

New tips are posted on LinkedIn, Twitter, and Facebook.

👉 Sign up to receive 2 video tips by email every week! 👈

List of all tips

Click to discuss the tip on LinkedIn, click to view the Jupyter notebook for a tip, or click to watch the tip video on YouTube:

# Description Links
1 Use ColumnTransformer to apply different preprocessing to different columns
2 Seven ways to select columns using ColumnTransformer
3 What is the difference between "fit" and "transform"?
4 Use "fit_transform" on training data, but "transform" (only) on testing/new data
5 Four reasons to use scikit-learn (not pandas) for ML preprocessing
6 Encode categorical features using OneHotEncoder or OrdinalEncoder
7 Handle unknown categories with OneHotEncoder by encoding them as zeros
8 Use Pipeline to chain together multiple steps
9 Add a missing indicator to encode "missingness" as a feature
10 Set a "random_state" to make your code reproducible
11 Impute missing values using KNNImputer or IterativeImputer
12 What is the difference between Pipeline and make_pipeline?
13 Examine the intermediate steps in a Pipeline
14 HistGradientBoostingClassifier natively supports missing values
15 Three reasons not to use drop='first' with OneHotEncoder
16 Use cross_val_score and GridSearchCV on a Pipeline
17 Try RandomizedSearchCV if GridSearchCV is taking too long
18 Display GridSearchCV or RandomizedSearchCV results in a DataFrame
19 Important tuning parameters for LogisticRegression
20 Plot a confusion matrix
21 Compare multiple ROC curves in a single plot
22 Use the correct methods for each type of Pipeline
23 Display the intercept and coefficients for a linear model
24 Visualize a decision tree two different ways
25 Prune a decision tree to avoid overfitting
26 Use stratified sampling with train_test_split
27 Two ways to impute missing values for a categorical feature
28 Save a model or Pipeline using joblib
29 Vectorize two text columns in a ColumnTransformer
30 Four ways to examine the steps of a Pipeline
31 Shuffle your dataset when using cross_val_score
32 Use AUC to evaluate multiclass problems
33 Use FunctionTransformer to convert functions into transformers
34 Add feature selection to a Pipeline
35 Don't use .values when passing a pandas object to scikit-learn
36 Most parameters should be passed as keyword arguments
37 Create an interactive diagram of a Pipeline in Jupyter
38 Get the feature names output by a ColumnTransformer
39 Load a toy dataset into a DataFrame
40 Estimators only print parameters that have been changed
41 Drop the first category from binary features (only) with OneHotEncoder
42 Passthrough some columns and drop others in a ColumnTransformer
43 Use OrdinalEncoder instead of OneHotEncoder with tree-based models
44 Speed up GridSearchCV using parallel processing
45 Create feature interactions using PolynomialFeatures
46 Ensemble multiple models using VotingClassifer or VotingRegressor
47 Tune the parameters of a VotingClassifer or VotingRegressor
48 Access part of a Pipeline using slicing
49 Tune multiple models simultaneously with GridSearchCV
50 Adapt this pattern to solve many Machine Learning problems

You can interact with all of these notebooks online using Binder:

Note: Some of the tips do not include any code, and can only be viewed on LinkedIn.

Who creates these tips?

Hi! I'm Kevin Markham, the founder of Data School. I've been teaching data science in Python since 2014. I create these tips because I love using scikit-learn and I want to help others use it more effectively.

How can I get better at scikit-learn?

I teach three courses:

👉 Find out which course is right for you! 👈

Do you have any other tips?

Yes! In 2019, I posted 100 pandas tricks. I also created a video featuring my top 25 pandas tricks.

© 2020-2021 Data School. All rights reserved.