GitXplorerGitXplorer
j

scikit-learn-videos

public
3689 stars
2540 forks
2 issues

Commits

List of commits on branch master.
Unverified
8545c74961398def7724501648fd504dbf061b41

update README

jjustmarkham committed 10 months ago
Unverified
8b8efe556d545ac12a76181ca0a2c3e52d3060b3

fix video link

jjustmarkham committed 3 years ago
Unverified
d188818f4d6d4dbb00545e1e9008b53d500d41ac

fix outdated links and add copyright

jjustmarkham committed 3 years ago
Unverified
4e8af9d8317f0422914f28d0e5effc652dc932ca

update to scikit-learn 0.23.2 and Python 3.9.1

jjustmarkham committed 4 years ago
Unverified
cec096b944cbd8d8973b728d45275e4c0c6cc139

add video 10

jjustmarkham committed 5 years ago
Unverified
923a5138df70088bb4bd09ff71d037325252b7e8

remove links to Kaggle blog

jjustmarkham committed 5 years ago

README

The README file for this repository.

Introduction to Machine Learning with scikit-learn

This video series will teach you how to solve Machine Learning problems using Python's popular scikit-learn library. There are 10 video tutorials totaling 4.5 hours, each with a corresponding Jupyter notebook.

You can watch the entire series on YouTube and view all of the notebooks using nbviewer.

The series is also available as a free online course that includes updated content, quizzes, and a certificate of completion.

Watch the first tutorial video

Note: The notebooks in this repository have been updated to use Python 3.9.1 and scikit-learn 0.23.2. The original notebooks (shown in the video) used Python 2.7 and scikit-learn 0.16, and can be downloaded from the archive branch. You can read about how I updated the code in this blog post.

Table of Contents

  1. What is Machine Learning, and how does it work? (video, notebook)

    • What is Machine Learning?
    • What are the two main categories of Machine Learning?
    • What are some examples of Machine Learning?
    • How does Machine Learning "work"?
  2. Setting up Python for Machine Learning: scikit-learn and Jupyter Notebook (video, notebook)

    • What are the benefits and drawbacks of scikit-learn?
    • How do I install scikit-learn?
    • How do I use the Jupyter Notebook?
    • What are some good resources for learning Python?
  3. Getting started in scikit-learn with the famous iris dataset (video, notebook)

    • What is the famous iris dataset, and how does it relate to Machine Learning?
    • How do we load the iris dataset into scikit-learn?
    • How do we describe a dataset using Machine Learning terminology?
    • What are scikit-learn's four key requirements for working with data?
  4. Training a Machine Learning model with scikit-learn (video, notebook)

    • What is the K-nearest neighbors classification model?
    • What are the four steps for model training and prediction in scikit-learn?
    • How can I apply this pattern to other Machine Learning models?
  5. Comparing Machine Learning models in scikit-learn (video, notebook)

    • How do I choose which model to use for my supervised learning task?
    • How do I choose the best tuning parameters for that model?
    • How do I estimate the likely performance of my model on out-of-sample data?
  6. Data science pipeline: pandas, seaborn, scikit-learn (video, notebook)

    • How do I use the pandas library to read data into Python?
    • How do I use the seaborn library to visualize data?
    • What is linear regression, and how does it work?
    • How do I train and interpret a linear regression model in scikit-learn?
    • What are some evaluation metrics for regression problems?
    • How do I choose which features to include in my model?
  7. Cross-validation for parameter tuning, model selection, and feature selection (video, notebook)

    • What is the drawback of using the train/test split procedure for model evaluation?
    • How does K-fold cross-validation overcome this limitation?
    • How can cross-validation be used for selecting tuning parameters, choosing between models, and selecting features?
    • What are some possible improvements to cross-validation?
  8. Efficiently searching for optimal tuning parameters (video, notebook)

    • How can K-fold cross-validation be used to search for an optimal tuning parameter?
    • How can this process be made more efficient?
    • How do you search for multiple tuning parameters at once?
    • What do you do with those tuning parameters before making real predictions?
    • How can the computational expense of this process be reduced?
  9. Evaluating a classification model (video, notebook)

    • What is the purpose of model evaluation, and what are some common evaluation procedures?
    • What is the usage of classification accuracy, and what are its limitations?
    • How does a confusion matrix describe the performance of a classifier?
    • What metrics can be computed from a confusion matrix?
    • How can you adjust classifier performance by changing the classification threshold?
    • What is the purpose of an ROC curve?
    • How does Area Under the Curve (AUC) differ from classification accuracy?
  10. Building a Machine Learning workflow (video, notebook)

    • Why should you use a Pipeline?
    • How do you encode categorical features with OneHotEncoder?
    • How do you apply OneHotEncoder to selected columns with ColumnTransformer?
    • How do you build and cross-validate a Pipeline?
    • How do you make predictions on new data using a Pipeline?
    • Why should you use scikit-learn (rather than pandas) for preprocessing?

Bonus Video

At the PyCon 2016 conference, I taught a 3-hour tutorial that builds upon this video series and focuses on text-based data. You can watch the tutorial video on YouTube.

Here are the topics I covered:

  1. Model building in scikit-learn (refresher)
  2. Representing text as numerical data
  3. Reading a text-based dataset into pandas
  4. Vectorizing our dataset
  5. Building and evaluating a model
  6. Comparing models
  7. Examining a model for further insight
  8. Practicing this workflow on another dataset
  9. Tuning the vectorizer (discussion)

Visit this GitHub repository to access the tutorial notebooks and many other recommended resources.