GitXplorerGitXplorer
l

Mixed-Depthwise-Convolutional-Kernels

public
62 stars
8 forks
3 issues

Commits

List of commits on branch master.
Unverified
456a1c858316a340abde85e2b689fdf0e6dce906

[Update] fixed model

lleaderj1001 committed 5 years ago
Unverified
111222fd201c913de1e3fdc564d10be09d33de02

[Update] for CIFAR dataset

lleaderj1001 committed 5 years ago
Verified
81b4bbea1de3fc4bac94723bb584ade5ab702684

Update model.py

lleaderj1001 committed 5 years ago
Verified
82828aa6d632ed75fd6cc6f86eaf096a62ed55e3

Update README.md

lleaderj1001 committed 5 years ago
Verified
2156f9ca4217890d5d3f9cc73e80a3908dd83f81

Update README.md

lleaderj1001 committed 5 years ago
Unverified
a89ed82013e73fb972c29473ecd8f6b02ee155ed

[Update] add imagenet dataset handler

lleaderj1001 committed 5 years ago

README

The README file for this repository.

Implementing Mixed-Depthwise-Convolutional-Kernels using Pytorch (22 Jul 2019)

  • Author:
    • Mingxing Tan (Google Brain)
    • Quoc V. Le (Google Brain)
  • Paper Link

Method

캡처

  • By using a multi scale kernel size, performance improvements and efficiency were obtained.
  • Each kernel size has a different receptive field, so we can get different feature maps for each kernel size.

Experiment

Datasets Model Acc1 Acc5 Parameters (My Model, Paper Model)
CIFAR-10 MixNet-s (WORK IN PROCESS) 92.82% 99.79% 2.6M, -
CIFAR-10 MixNet-m (WORK IN PROCESS) 92.52% 99.78% 3.5M, -
CIFAR-10 MixNet-l (WORK IN PROCESS) 92.72% 99.79% 5.8M, -
IMAGENET MixNet-s (WORK IN PROCESS) 4.1M, 4.1M
IMAGENET MixNet-m (WORK IN PROCESS) 5.0M, 5.0M
IMAGENET MixNet-l (WORK IN PROCESS) 7.3M, 7.3M

Usage

python main.py
  • --data (str): the ImageNet dataset path

  • --dataset (str): dataset name, (example: CIFAR10, CIFAR100, MNIST, IMAGENET)

  • --batch-size (int)

  • --num-workers (int)

  • --epochs (int)

  • --lr (float): learning rate

  • --momentum (float): momentum

  • --weight-decay (float): weight dacay

  • --print-interval (int): training log print cycle

  • --cuda (bool)

  • --pretrained-model (bool): hether to use the pretrained model

Todo

  • Distributed SGD
  • ImageNet experiment

Reference