GitXplorerGitXplorer
m

distributional

public
101 stars
17 forks
33 issues

Commits

List of commits on branch main.
Unverified
9d8818575895da26923daa38a232eb496c0addc1

Fixed `dist_gamma()` not allowing the `scale` parameter to be used

mmitchelloharawild committed 14 days ago
Unverified
683b96e3098568a2af3fe6de621d6b11690855bd

Use .mapply

mmitchelloharawild committed 2 months ago
Unverified
2a2db7677e95766dcfaa2864978e9f76640c69cd

Remove usage of |>

mmitchelloharawild committed 3 months ago
Unverified
f205f8a02c57a6d8437a04b9f6cc1ff6a95732cf

Default to monotonic increasing for equal bounds

mmitchelloharawild committed 3 months ago
Unverified
3a721691d597095e27d8ebc53e137d6b4466973a

Change default of quantile.dist_mvnorm() to use equicoordinate quantiles

mmitchelloharawild committed 4 months ago
Unverified
3ea6158e36384d2c450c9fc4fca31e607117c7eb

Increment version number to 0.5.0.9000

mmitchelloharawild committed 4 months ago

README

The README file for this repository.

distributional

Lifecycle: stable R-CMD-check

CRAN status Download count

The distributional package allows distributions to be used in a vectorised context. It provides methods which are minimal wrappers to the standard d, p, q, and r distribution functions which are applied to each distribution in the vector. Additional distributional statistics can be computed, including the mean(), median(), variance(), and intervals with hilo().

The distributional nature of a model’s predictions is often understated, with default output of prediction methods usually only producing point predictions. Some R packages (such as forecast) further emphasise uncertainty by producing point forecasts and intervals by default, however the user’s ability to interact with them is limited. This package vectorises distributions and provides methods for working with them, making distributions compatible with prediction outputs of modelling functions. These vectorised distributions can be illustrated with ggplot2 using the ggdist package, providing further opportunity to visualise the uncertainty of predictions and teach distributional theory.

Installation

You can install the released version of distributional from CRAN with:

install.packages("distributional")

The development version can be installed from GitHub with:

# install.packages("remotes")
remotes::install_github("mitchelloharawild/distributional")

Examples

Distributions are created using dist_*() functions. A list of included distribution shapes can be found here: https://pkg.mitchelloharawild.com/distributional/reference/

library(distributional)
my_dist <- c(dist_normal(mu = 0, sigma = 1), dist_student_t(df = 10))
my_dist
#> <distribution[2]>
#> [1] N(0, 1)     t(10, 0, 1)

The standard four distribution functions in R are usable via these generics:

density(my_dist, 0) # c(dnorm(0, mean = 0, sd = 1), dt(0, df = 10))
#> [1] 0.3989423 0.3891084
cdf(my_dist, 5) # c(pnorm(5, mean = 0, sd = 1), pt(5, df = 10))
#> [1] 0.9999997 0.9997313
quantile(my_dist, 0.1) # c(qnorm(0.1, mean = 0, sd = 1), qt(0.1, df = 10))
#> [1] -1.281552 -1.372184
generate(my_dist, 10) # list(rnorm(10, mean = 0, sd = 1), rt(10, df = 10))
#> [[1]]
#>  [1]  1.262954285 -0.326233361  1.329799263  1.272429321  0.414641434
#>  [6] -1.539950042 -0.928567035 -0.294720447 -0.005767173  2.404653389
#> 
#> [[2]]
#>  [1]  0.99165484 -1.36999677 -0.40943004 -0.85261144 -1.37728388  0.81020460
#>  [7] -1.82965813 -0.06142032 -1.33933588 -0.28491414

You can also compute intervals using hilo()

hilo(my_dist, 0.95)
#> <hilo[2]>
#> [1] [-0.01190677, 0.01190677]0.95 [-0.01220773, 0.01220773]0.95

Additionally, some distributions may support other methods such as mathematical operations and summary measures. If the methods aren’t supported, a transformed distribution will be created.

my_dist
#> <distribution[2]>
#> [1] N(0, 1)     t(10, 0, 1)
my_dist*3 + 2
#> <distribution[2]>
#> [1] N(2, 9)        t(t(10, 0, 1))
mean(my_dist)
#> [1] 0 0
variance(my_dist)
#> [1] 1.00 1.25

You can also visualise the distribution(s) using the ggdist package.

library(ggdist)
library(ggplot2)

df <- data.frame(
  name = c("Gamma(2,1)", "Normal(5,1)", "Mixture"),
  dist = c(dist_gamma(2,1), dist_normal(5,1),
           dist_mixture(dist_gamma(2,1), dist_normal(5, 1), weights = c(0.4, 0.6)))
)

ggplot(df, aes(y = factor(name, levels = rev(name)))) +
  stat_dist_halfeye(aes(dist = dist)) + 
  labs(title = "Density function for a mixture of distributions", y = NULL, x = NULL)

Related work

There are several packages which unify interfaces for distributions in R:

  • stats provides functions to work with possibly multiple distributions (comparisons made below).
  • distributions3 represents singular distributions using S3, with particularly nice documentation. This package makes use of some code and documentation from this package.
  • distr represents singular distributions using S4.
  • distr6 represents singular distributions using R6.
  • Many more in the CRAN task view

This package differs from the above libraries by storing the distributions in a vectorised format. It does this using vctrs, so it should play nicely with the tidyverse (try putting distributions into a tibble!).