Using Domain-Adversarial NN to Predict Cleavage Sites of Signal Peptides.
$ source config_env
$ pip3 install -r requires.txt
Generate 20 models and evaluate them.
All available dataset: euk
, gram-
, gram+
, all
, bacteria
.
Ratio: the ratio of good and bad features.
e.g. 0.5
for 1:1, 0.2
for 1:4.
$ ./run.sh euk 0.5
All the result will be in log/euk_0.5.txt
.
Go to bin
:
$ cd bin/
All available dataset: euk
, gram-
, gram+
, all
, bacteria
.
$ ./build_train_features.py euk
Initial training features saves in data/features/
as train.npy
.
Evalate features saves in data/features/
and eval.npy
.
All available dataset: euk
, gram-
, gram+
, all
, bacteria
.
$ ./build_eval_features.py euk
Testing features saves in data/features/
as test.npy
.
Ratio : the ratio of good and bad features.
e.g. 0.5
for 1:1, 0.2
for 1:4
$ ./random_select.py 0.5
'Good' and 'bad' features saves in data/features/
train_good.npy
and train_bad.npy
.
Ratio : the ratio of good and bad features.
e.g. 0.5
for 1:1, 0.2
for 1:4
SPDS17 features: test.npy
$ ./con_bad_data.py 0.5
'Good' and 'bad' features saves in data/features/
train_good.npy
and train_bad.npy
.
$ cd experiment/
$ ./domain_adversarial.py model_name/
The model saves in models/modle_name/
./get_pred.py model_name/