GitXplorerGitXplorer
b

yarlp

public
12 stars
1 forks
1 issues

Commits

List of commits on branch master.
Unverified
e6bc70afe32f8617f56180d60d6a100c83868119

readme.rst

committed 7 years ago
Unverified
6e7ca269ff99e616fb103d658c95260670d17fa0

setup

committed 7 years ago
Unverified
1e68a95d5f31e891887a9b5784726bc412e8a3b9

req

committed 7 years ago
Unverified
d3d9da7a461809a8676f47c43079bd67d7e4d4ca

license

committed 7 years ago
Unverified
d83202f343ea50a4f0b7a10647c2723c0c2a29ed

fix readme

committed 7 years ago
Unverified
48f3287a2a7207c30f743661488d2937e8940cbf

submodule

committed 7 years ago

README

The README file for this repository.

Build Status

yarlp

Yet Another Reinforcement Learning Package

Implementations of CEM, REINFORCE, TRPO, DDQN, A2C with reproducible benchmarks. Experiments are templated using jsonschema and are compared to published results. This is meant to be a starting point for working implementations of classic RL algorithms. Unfortunately even implementations from OpenAI baselines are not always reproducible.

A working Dockerfile with yarlp installed can be run with:

  • docker build -t "yarlpd" .
  • docker run -it yarlpd bash

To run a benchmark, simply:

python yarlp/experiment/experiment.py --help

If you want to run things manually, look in examples or look at this:

from yarlp.agent.trpo_agent import TRPOAgent
from yarlp.utils.env_utils import NormalizedGymEnv

env = NormalizedGymEnv('MountainCarContinuous-v0')
agent = TRPOAgent(env, seed=123)
agent.train(max_timesteps=1000000)

Benchmarks

We benchmark against published results and Openai baselines where available using yarlp/experiment/experiment.py. Benchmark scripts for Openai baselines were made ad-hoc, such as this one.

Atari10M

BeamRider Breakout Pong
QBert Seaquest SpaceInvaders

DDQN with dueling networks and prioritized replay

python yarlp/experiment/experiment.py run_atari10m_ddqn_benchmark

I trained 6 Atari environments for 10M time-steps (40M frames), using 1 random seed, since I only have 1 GPU and limited time on this Earth. I used DDQN with dueling networks, but no prioritized replay (although it's implemented). I compare the final mean 100 episode raw scores for yarlp (with exploration of 0.01) with results from Hasselt et al, 2015 and Wang et al, 2016 which train for 200M frames and evaluate on 100 episodes (exploration of 0.05).

I don't compare to OpenAI baselines because the OpenAI DDQN implementation is not currently able to reproduce published results as of 2018-01-20. See this github issue, although I found these benchmark plots to be pretty helpful.

env yarlp DUEL 40M Frames Hasselt et al DDQN 200M Frames Wang et al DUEL 200M Frames
BeamRider 8705 7654 12164
Breakout 423.5 375 345
Pong 20.73 21 21
QBert 5410.75 14875 19220.3
Seaquest 5300.5 7995 50245.2
SpaceInvaders 1978.2 3154.6 6427.3
BeamRiderNoFrameskip-v4 BreakoutNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4
SeaquestNoFrameskip-v4 SpaceInvadersNoFrameskip-v4

A2C

python yarlp/experiment/experiment.py run_atari10m_a2c_benchmark

A2C on 10M time-steps (40M frames) with 1 random seed. Results compared to learning curves from Mnih et al, 2016 extracted at 10M time-steps from Figure 3. You are invited to run for multiple seeds and the full 200M frames for a better comparison.

env yarlp A2C 40M Mnih et al A3C 40M 16-threads
BeamRider 3150 ~3000
Breakout 418 ~150
Pong 20 ~20
QBert 3644 ~1000
SpaceInvaders 805 ~600
BeamRiderNoFrameskip-v4 BreakoutNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4
SeaquestNoFrameskip-v4 SpaceInvadersNoFrameskip-v4

Here are some more plots from OpenAI to compare against.

Mujoco1M

TRPO

python yarlp/experiment/experiment.py run_mujoco1m_benchmark

We average over 5 random seeds instead of 3 for both baselines and yarlp. More seeds probably wouldn't hurt here, we report 95th percent confidence intervals.

Hopper-v1 HalfCheetah-v1 Reacher-v1 Swimmer-v1
InvertedDoublePendulum-v1 Walker2d-v1 InvertedPendulum-v1

CLI scripts

CLI convenience scripts will be installed with the package:

  • Run a benchmark:
    • python yarlp/experiment/experiment.py --help
  • Plot yarlp compared to Openai baselines benchmarks:
    • compare_benchmark <yarlp-experiment-dir> <baseline-experiment-dir>
  • Experiments:
    • Experiments can be defined using json, validated with jsonschema. See here for sample experiment configs. You can do a grid search if multiple parameters are specified, which will run in parallel.
    • Example: run_yarlp_experiment --spec-file experiment_configs/trpo_experiment_mult_params.json
  • Experiment plots:
    • make_plots <experiment-dir>