GitXplorerGitXplorer
k

rcan-tensorflow

public
53 stars
23 forks
2 issues

Commits

List of commits on branch master.
Unverified
e2d8d61dfbfb64f93cd455d3ca813dc4381d4226

update: refactor codes

kkozistr committed 6 years ago
Unverified
417620af5fc609d7d8c651e2ec7bbcd0f30881e6

update: gitignore

kkozistr committed 6 years ago
Unverified
f51b1ddd9f7adba7ac3e5e49889e1eace2e20a8d

update: opt SGD + M with nesterov

kkozistr committed 6 years ago
Unverified
96ca6774b970f039bfb22cd0b3866831e3b01570

update: image pre/post-processing

kkozistr committed 6 years ago
Unverified
4716b3826ca53eb0340aa2b1ceb2d8f4977518f0

fix: true_divide problem

kkozistr committed 6 years ago
Unverified
2ab6a7c722dcd5fa547ccccf85d4f269973cf185

fix: codes...

kkozistr committed 6 years ago

README

The README file for this repository.

rcan-tensorflow

Image Super-Resolution Using Very Deep Residual Channel Attention Networks Implementation in Tensorflow

ECCV 2018 paper

Orig PyTorch Implementation

License: MIT Total alerts Language grade: Python

Introduction

This repo contains my implementation of RCAN (Residual Channel Attention Networks).

Here're the proposed architectures in the paper.

  • Channel Attention (CA) CA

  • Residual Channel Attention Block (RCAB) RCAB

  • Residual Channel Attention Network (RCAN), Residual Group (GP) RG

All images got from the paper

Dependencies

  • Python
  • Tensorflow 1.x
  • tqdm
  • h5py
  • scipy
  • cv2

DataSet

DataSet LR HR
DIV2K 800 (192x192) 800 (768x768)

Usage

training

# hyper-paramters in config.py, you can edit them!
$ python3 train.py --data_from [img or h5]

testing

$ python3 test.py --src_image sample.png --dst_image sample-upscaled.png

Results

  • OOM on my machine :(... I can't test my code, but maybe code runs fine.
Example\Resolution 192x192x3 image (sample) 768x768x3 image (generated)
Example1 (X4 scaled) img img

To-Do

  1. None

Author

HyeongChan Kim / @kozistr