GitXplorerGitXplorer
o

tiktoken

public
13052 stars
908 forks
63 issues

Commits

List of commits on branch main.
Unverified
63527649963def8c759b0f91f2eb69a40934e468

Alas, emulation

hhauntsaninja committed 3 months ago
Unverified
ed27aa34fe943fc7cdda9d2c22e9f06df0de4360

Attempt to fix emulated builds

hhauntsaninja committed 3 months ago
Unverified
05e66e8db7ef220d3c0b1aafbee5af289345684b

Partial sync of codebase

hhauntsaninja committed 4 months ago
Verified
9f7f69d62d6052dcc2fd54357df6ae9ae2590518

Add possessive quantifiers to avoid catastrophic backtracking (#258)

ll0rinc committed 4 months ago
Unverified
c0ba74c238d18b4824c25f3c27fc8698055b9a76

update README to mention gpt-4o

hhauntsaninja committed 8 months ago
Unverified
bfe00ad1bf59fac47513b45fe5173672dcbbcbb4

Bump cibuildwheel

hhauntsaninja committed 8 months ago

README

The README file for this repository.

⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI's models.

import tiktoken
enc = tiktoken.get_encoding("o200k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-4o")

The open source version of tiktoken can be installed from PyPI:

pip install tiktoken

The tokeniser API is documented in tiktoken/core.py.

Example code using tiktoken can be found in the OpenAI Cookbook.

Performance

tiktoken is between 3-6x faster than a comparable open source tokeniser:

image

Performance measured on 1GB of text using the GPT-2 tokeniser, using GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0.

Getting help

Please post questions in the issue tracker.

If you work at OpenAI, make sure to check the internal documentation or feel free to contact @shantanu.

What is BPE anyway?

Language models don't see text like you and I, instead they see a sequence of numbers (known as tokens). Byte pair encoding (BPE) is a way of converting text into tokens. It has a couple desirable properties:

  1. It's reversible and lossless, so you can convert tokens back into the original text
  2. It works on arbitrary text, even text that is not in the tokeniser's training data
  3. It compresses the text: the token sequence is shorter than the bytes corresponding to the original text. On average, in practice, each token corresponds to about 4 bytes.
  4. It attempts to let the model see common subwords. For instance, "ing" is a common subword in English, so BPE encodings will often split "encoding" into tokens like "encod" and "ing" (instead of e.g. "enc" and "oding"). Because the model will then see the "ing" token again and again in different contexts, it helps models generalise and better understand grammar.

tiktoken contains an educational submodule that is friendlier if you want to learn more about the details of BPE, including code that helps visualise the BPE procedure:

from tiktoken._educational import *

# Train a BPE tokeniser on a small amount of text
enc = train_simple_encoding()

# Visualise how the GPT-4 encoder encodes text
enc = SimpleBytePairEncoding.from_tiktoken("cl100k_base")
enc.encode("hello world aaaaaaaaaaaa")

Extending tiktoken

You may wish to extend tiktoken to support new encodings. There are two ways to do this.

Create your Encoding object exactly the way you want and simply pass it around.

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)

Use the tiktoken_ext plugin mechanism to register your Encoding objects with tiktoken.

This is only useful if you need tiktoken.get_encoding to find your encoding, otherwise prefer option 1.

To do this, you'll need to create a namespace package under tiktoken_ext.

Layout your project like this, making sure to omit the tiktoken_ext/__init__.py file:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py

my_encodings.py should be a module that contains a variable named ENCODING_CONSTRUCTORS. This is a dictionary from an encoding name to a function that takes no arguments and returns arguments that can be passed to tiktoken.Encoding to construct that encoding. For an example, see tiktoken_ext/openai_public.py. For precise details, see tiktoken/registry.py.

Your setup.py should look something like this:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)

Then simply pip install ./my_tiktoken_extension and you should be able to use your custom encodings! Make sure not to use an editable install.